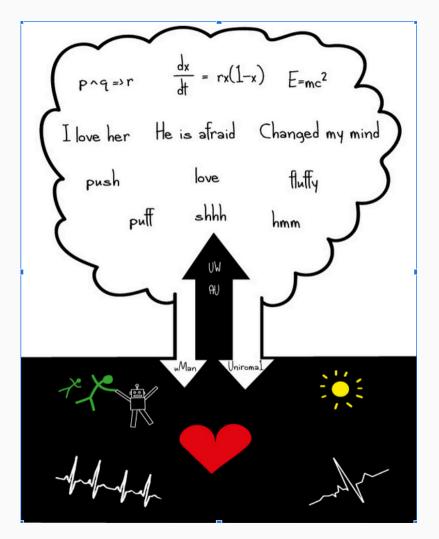
Interpersonal Synergies in Social Interactions: From Parent-Child Play to Dance Improvisation

Julian Zubek

7/05/2025

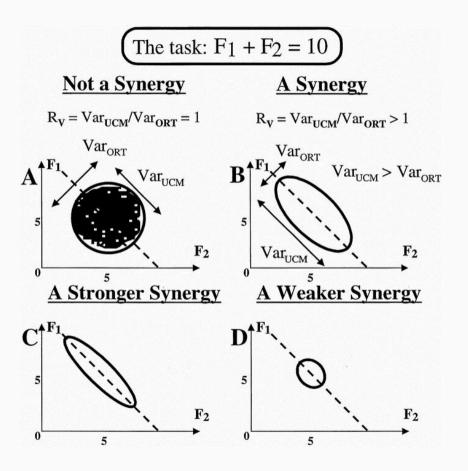
Human Interactivity and Language Lab, Faculty of Psychology, University of Warsaw


H I L L Human Interactivity and Language Lab

An interdisciplinary research group (cognitive science, psychology, philosophy) led by prof. Joanna Rączaszek-Leonardi.

"HILL gathers people interested in the importance of interactivity for human cognition. We study **physical, situated, embodied and value-laden interactions** seeking in them both sources and motivations for cognitive processes and structures."

Central question: relation between **form** and **dynamics**.



Interpersonal synergies are higher-order control systems formed by coupling movement system degrees of freedom of two (or more) actors.

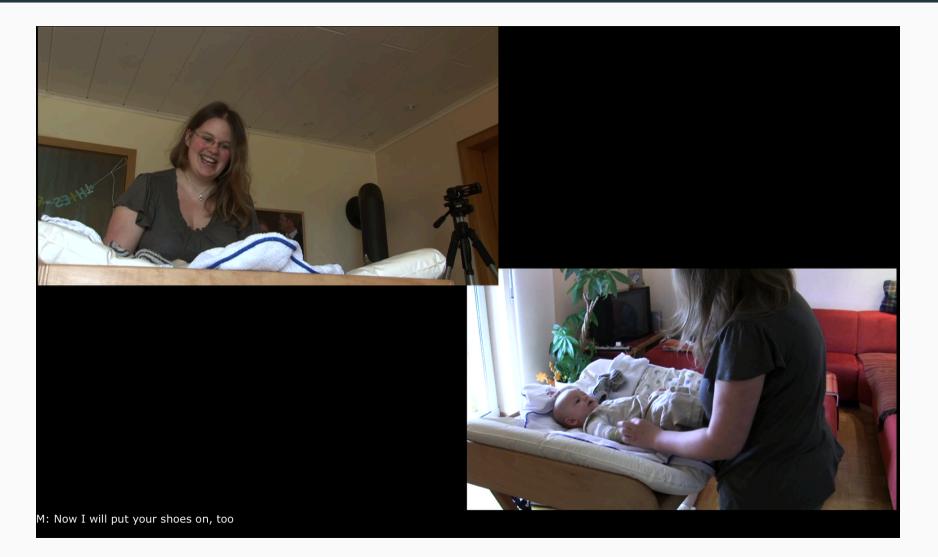
 Riley, Richardson, Shockley, Ramenzoni (2011). Interpersonal synergies

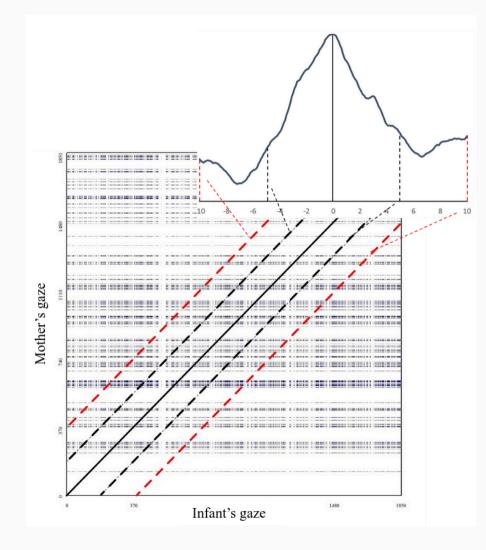
A synergy is characterized by:

- dimensionality compression (functional reduction of degrees of freedom),
- reciprocal compensation (components react to each other).

Latash, Scholz & Schöner (2002). Motor Control Strategies Revealed in the Structure of Motor Variability.

Interpersonal synergies II


Interpersonal synergies are ubiquitous in social interactions!


Assumptions:

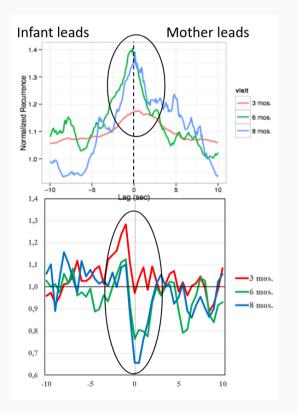
- 1. Movement coordination in social interactions arises from interpersonal synergies.
- 2. Synergistic description naturally extends to verbal exchanges.
- 3. Interpersonal synergies form the scaffolding for social development.

Study 1: Learning to move and talk in interaction

Study 1: Quantifying time-lagged coordination

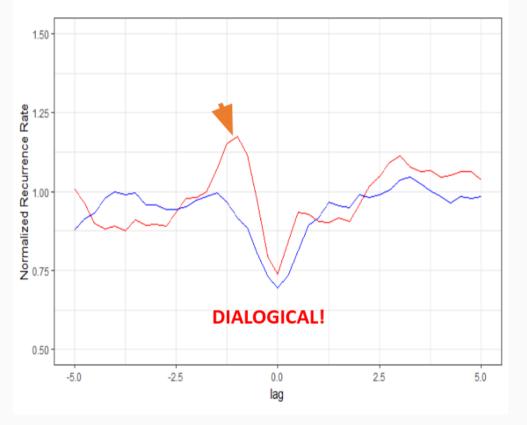
- Videos manually coded for gaze and vocalization.
- Cross-recurrence plot: recurrent point marked if at time t₁ mother performs the same behavior as child at time t₂ (for all pairs of t₁, t₂).
- Diagonal profile: average number of recurrent points corresponding to specific time lag.

Study 1: Recognizing the timings and rhythms


Emergent dynamics of mother-infant dyad: **mutual constraining.**

Coupling of gaze (synchrony)

Complementarity of vocalizations (turn-taking)


Nomikou, I., Leonardi G., Rohlfing K., Rączaszek-Leonardi, J. (2016). Constructing interaction: the development of gaze dynamics. Leonardi, G; Nomikou, I., Rohlfing K., Rączaszek-Leonardi, J. (2016) Vocal Interactions at the Dawn of Communication.

$3 \text{ months} \rightarrow 8 \text{ months}$

Study 1: Language in coordinative dynamics

Mothers follow more reliably speech-like (red) than non-speech-like (blue) vocalizations

The Symbol Ungrounding problem (Rączaszek-Leonardi & Deacon, 2018): How arbitrary sounds become meaningful forms?

Differentiation/segregation of the vocal layer (**Timing!** Warlaumont, 2014).

Rączaszek-Leonardi, J. (2016). How does a word become a message? An illustration on a developmental time-scale.

Rączaszek-Leonardi, J., Nomikou, I., Rohlfing, K. J. & Deacon, T. W. (2018). Language Development From an Ecological Perspective: Ecologically Valid Ways to Abstract Symbols.

Study 2: Development of social skills in interaction

Assessing typical parent-child interaction patterns in joint action \rightarrow a potential scaffolding for social development.

Study 2: Movement coordination and theory of mind tasks

Sample: 211 children, 5.5 years old.

ToM score: based on 5 false-beliefs tasks.

Parent and child movement estimated from video using frame-difference method. Coordination quantified using cRQA.

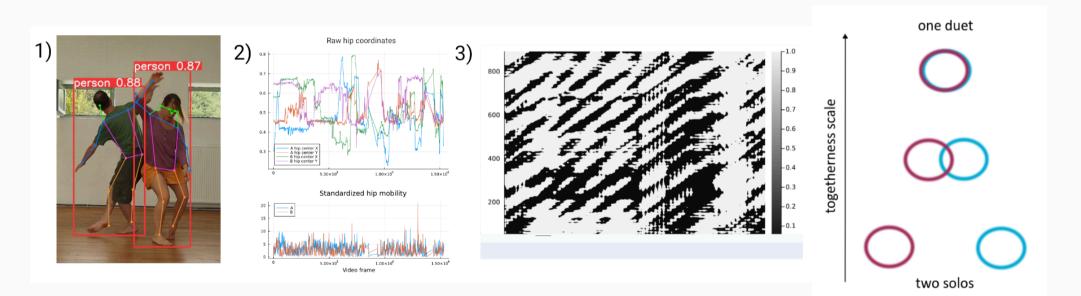
Children with high ToM:

- maintain lower level of coordination
- ...but follow their parents more reliably!

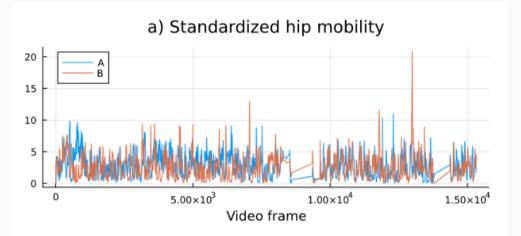
Interpersonal synergies have to be functional, but not rigid.

Białek, A., Zubek, J., Jackiewicz-Kawka, M., Adamik, K., & Białecka-Pikul, M. (2022). Coordinating movements and beliefs: Different facets of doing things together.

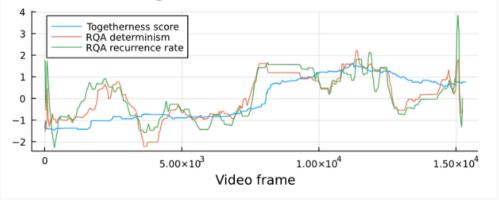
	eta	p	
Child's gender	.213	.022	
P_instruction	.120	.295	
P_presence	.063	.608	
Executive functions			
EF_flexibility	.176	.092	
EF_hot	162	.201	
EF_memory	.263	.012	1
EF_inhibition	072	.614	
Movement coordination			
RR	442	.009	\downarrow
RR_asymmetry	232	.047	Ļ
RR_max_delay	.209	.032	1
ENTR_child	.603	.018	1
LAM_child	369	.020	↓
ENTR_parent	431	.057	
LAM_parent	.289	.051	


Linear model predicting ToM score ($R^2 = .447$).

Study 3: Movement coordination and togetherness in dance


Does movement coordination reflect changes in an ongoing interaction?

Material: recordings of 7 improvised dance duets, level of "togetherness" rated continuously by 5 experts.


Position of individual body parts tracked using YOLOv8 model. Coordination analysis using moving window cRQA.

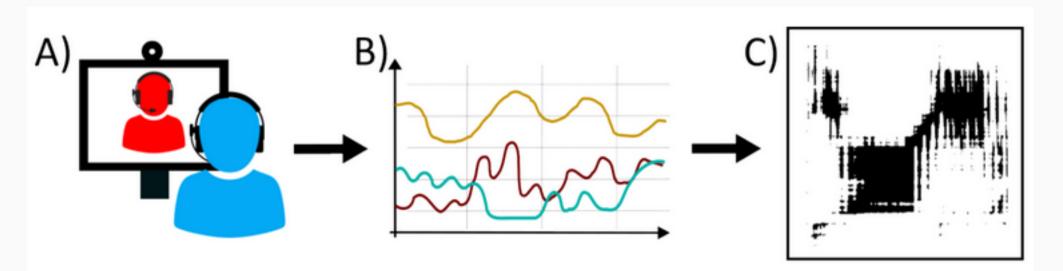
Study 3: Movement coordination and the togetherness in dance

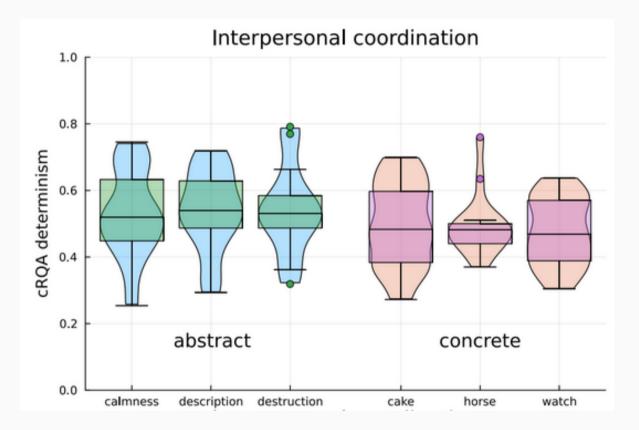
b) Togetherness and determinism

duet	N	r _{RR}	p_{RR}	<i>r</i> _{DET}	<i>p</i> _{DET}
1	4293	.01	.45	.08	< .024
2	3506	.46	< .024	.34	< .024
3	2425	01	.14	06	< .024
4	4540	.10	< .024	.09	< .024
5	4306	24	< .024	06	< .024
6	3245	.25	< .024	.17	< .024
7	3300	.53	< .024	.22	< .024

Correlations between fluctuations in togetherness and RR and DET compared against false pairs.

More stable coordination \rightarrow better interpersonal connection.


Zubek, J., Łucznik, K. (2024). Movement coordination as a measure of togetherness in improvised dance duets.


Coordination is helpful for understanding others in motion. What about verbal exchanges?

- Language as a carrier of **abstract concepts** stepping away from the immediate environment.
- Words as Social Tools (Borghi & Binkofski, 2014): abstract meanings grounded in social interactions.
 - The more uncertain we are, the more we need to negotiate meaning with others.
 - Interpersonal synergies might support the negotiation process.

Data: recordings of 25 pairs negotiating definitions of concrete and abstract words on Zoom.

Movement extraction: body parts tracked with YOLOv8, registered shifts in the position of tip of the nose. Coordination quantified using cRQA.

Abstract words elicit more stable coordination than concrete ones.

Understanding of abstraction is also embodied and reflected by real-time dynamics!

Zubek, Miecznikowski, Rossi, Fini, Borghi, Rączaszek-Leonardi (2024). Interactive basis for abstract concepts understanding (in preparation)

H I L L Human Interactivity and Language Lab

https://hill.psych.uw.edu.pl https://zubekj.github.io

We are grateful to all our collaborators and experiment participants.