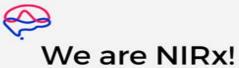
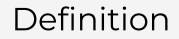

Introduction to fNIRS

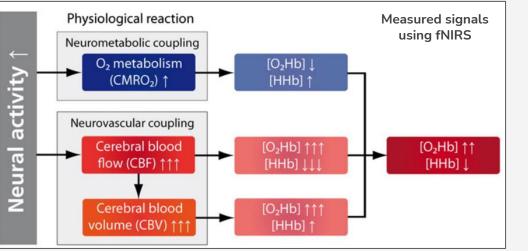

Dalila Burin, Franziska Keller Scientific Consultants – NIRx

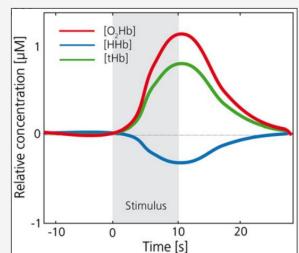
6.5.2025 SYNCC lectures and workshops - Warsaw



NIRX

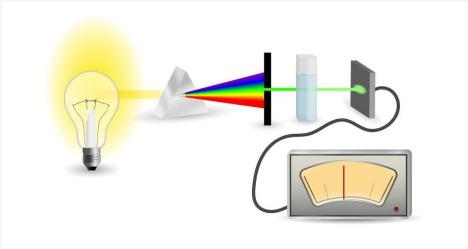
fNIRS: <u>Functional Near-InfraRed</u> <u>Spectroscopy</u>


A form of functional optical imaging used to measure superficial cortical hemodynamics.



Oxygenated blood is routed to areas of increased neural activity...

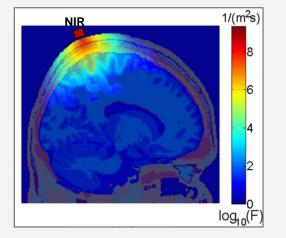
...which induces the **hemodynamic response**!

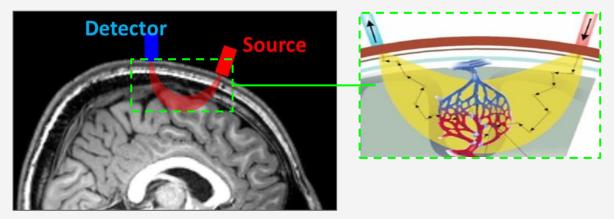


Scholkmann et al., 2014

NIRX

The study of interaction of light with matter used to identify or measure certain characteristics of molecular structures

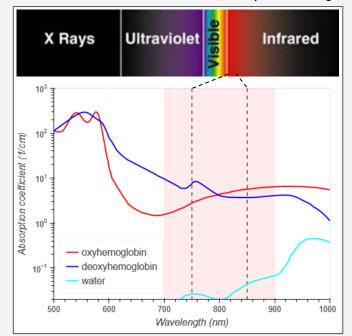

fNIR-Spectroscopy: changes in light absorption reflect hemodynamic activity

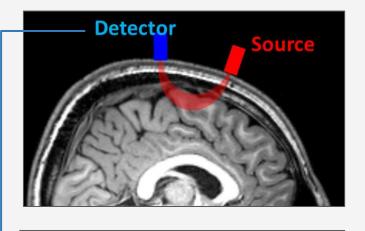

Introduction to fNIRS

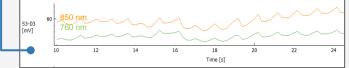
Photons scatter in all directions...

...but **most detected photons** follow this path distribution profile, i.e. the **photon banana**.

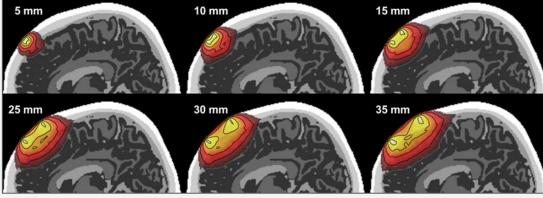
NIRX

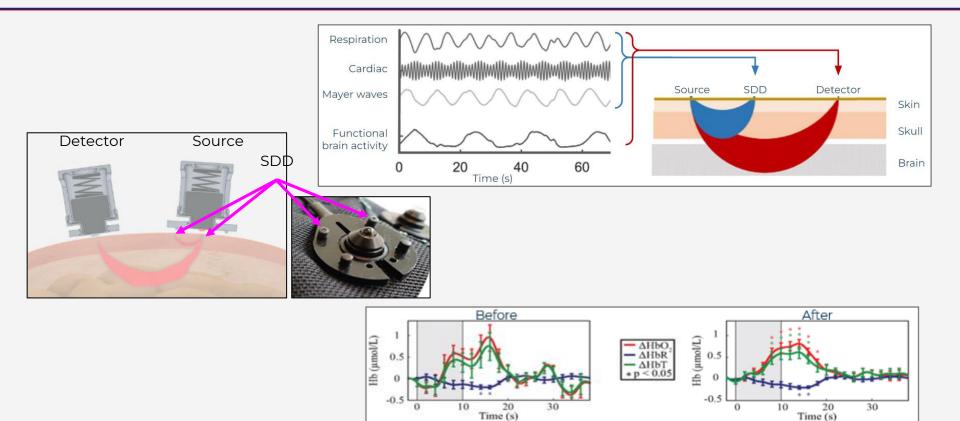

Near-Infrared Light


Longer wavelengths can propagate better through biological tissue...



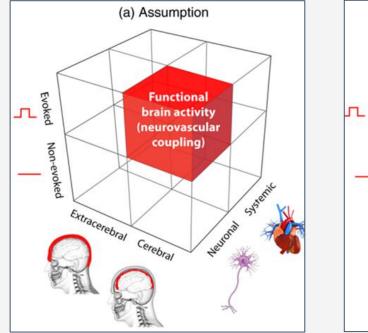
...and near-Infrared light is absorbed by oxygenenated and deoxygenerated hemoblogin at 850 and 760 nM, respectively.

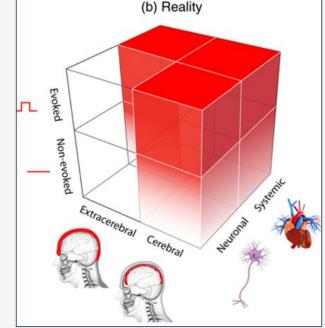



Depth of channel depends on distance between source and detector

Strangman et al., 2013

Short Distance Channels

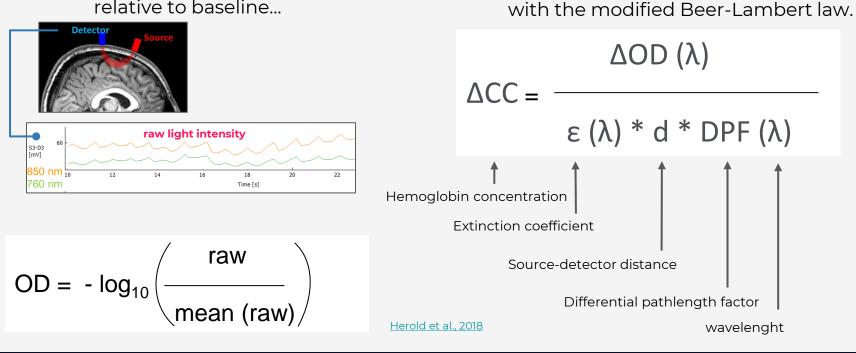




Introduction to fNIRS

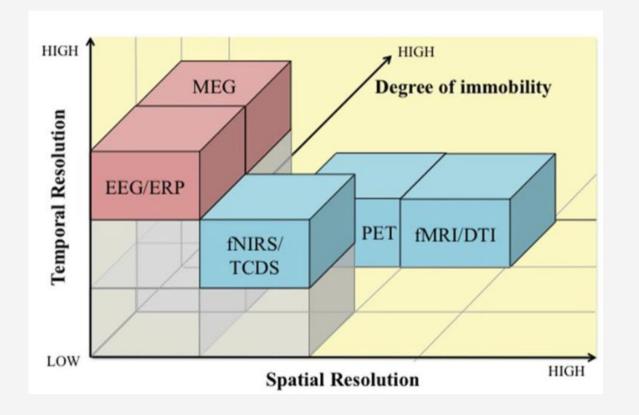
Sources of the hemodynamic response measured with fNIRS

"We found that the use of SS fNIRS channels as regressors of no-interest within a linear regression model was the best performing approach examined."


<u>Santosa et al., 2020</u> <u>Neurophotonics</u>

...and then, calculate change in

hemoglobin concentration (CC)


First, calculate change in **light attenuation (optical density, OD)**, relative to baseline...

Introduction to fNIRS

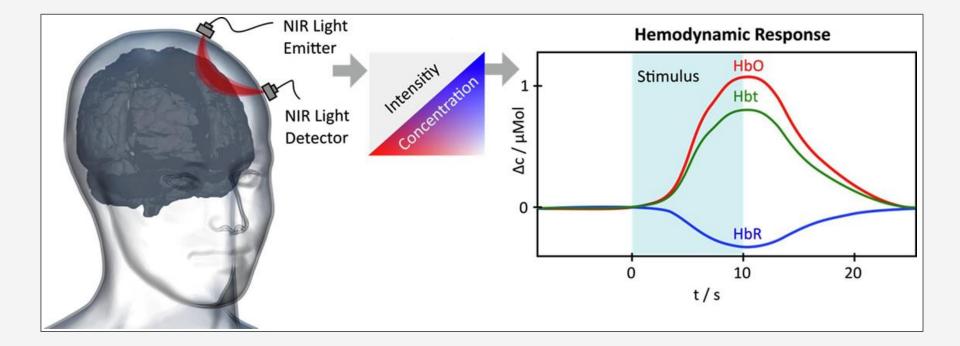
fNIRS in Neuroimaging

NIRX

<u>Mehta et al., 2013</u>

fNIRS Applications

BCI/Neurofeedback Cognitive Disorders **Developmental Disorders** Hyperscanning (multi-subject) Movement/Balance Infant Monitoring Social Interaction Speech/Language Stroke and Rehabilitation Traumatic Brain Injury Visual Impairment/Stimulation


Multimodalities:

EEG fMRI TMS tDCS EOG

Physiology Eye-tracking Thermal Cameras Accelerometer Virtual Reality

Introduction to fNIRS

Resources

NIRX

Videos:

- <u>Video: Introduction to fNIRS and NIRx</u>
- <u>Video: 2017 Workshop Intro to fNIRS by NIRx co-</u> founder

Reviews

- **Scholkmann F, et al. <u>A review on continuous wave</u> <u>functional near-infrared spectroscopy and imaging</u> <u>instrumentation and methodology</u>. Neuroimage. 2014. doi: 10.1016/j.neuroimage.2013.05.004.
- Boas DA, et al. <u>Twenty years of functional near-infrared</u> <u>spectroscopy: introduction for the special issue</u>. Neuroimage. 2014. doi: 10.1016/j.neuroimage.2013.11.033.
- Herold F, et al. <u>Applications of Functional Near-Infrared</u> <u>Spectroscopy (fNIRS) Neuroimaging in</u> <u>Exercise⁻Cognition Science: A Systematic,</u> <u>Methodology-Focused Review</u>. J Clin Med. 2018. doi: 10.3390/jcm7120466.

Best Practices

 **Yücel MA, et al. <u>Best practices for fNIRS publications.</u> Neurophoton. 2021. https://doi.org/10.1117/1.NPh.8.1.012101

Signal Confounds

• Tachtsidis I, Scholkmann F. <u>False positives and false negatives</u> in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics. 2016. doi: 10.1117/1.NPh.3.3.031405.

Short channels

- Strangman GE, et al. <u>Depth sensitivity and source-detector</u> separations for near infrared spectroscopy based on the <u>Colin27 brain template</u>. PLoS One. 2013. doi: 10.1371/journal.pone.0066319.
- Santosa H, et al. <u>Quantitative comparison of correction</u> <u>techniques for removing systemic physiological signal in</u> <u>functional near-infrared spectroscopy studies</u>. Neurophoton. 2020. https://doi.org/10.1117/1.NPh.7.3.035009
- Gregg NM, et al. <u>Brain specificity of diffuse optical imaging:</u> improvements from superficial signal regression and tomography. Front Neuroenergetics. 2010 doi: 10.3389/fnene.2010.00014.

Basics of Experimental Design

Dalila Burin, Franziska Keller Scientific Consultants – NIRx

6.5.2025 SYNCC lectures and workshops - Warsaw

Continuous Wave

- No absolute information (changes relative to a given baseline)
- Precise pathlength unknown (cannot measure time of flight)
- Depth discrimination requires multiple source-detector separations

• Near-Infrared Light

- Cortex only -> deeper areas of the brain cannot be measured
- Spatial resolution limits identification precision of anatomical landmarks

• Inter-subject variability

- If no digitizer (or individual MR scan) available, spatial registration is less precise due to, for example, between-subjects anatomical variations
- Higher inter-subject variability as compared to fMRI for example because of possibly different signal quality

• Possible artifacts

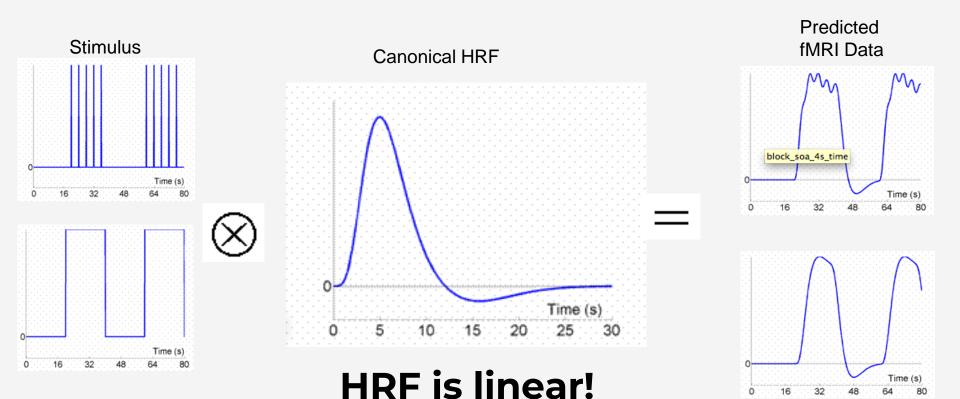
- Continuously detecting other sources of light (sun, room light, Motion- and Eye-Tracking systems) -> thoughtful experimental setup is necessary → detector saturation possible?
- o Motion artifacts

• Signal Confounds

- Extracerebral greatly contribute to measured signal (balance: SDS and SNR)
- Cortex evoked responses may also be contaminated with systemic signals
- Depending on the target region, underlying anatomy may be more susceptible to systemic contamination (for example proximity of blood vessels)

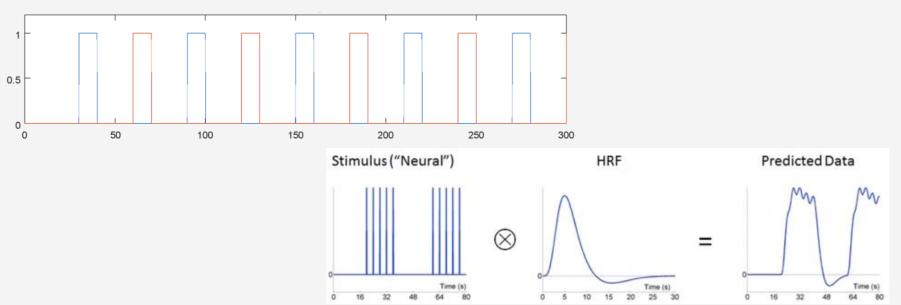
• Setup time

• Is extending the coverage worth the additional time needed for subject preparation and instrument setup?


An effective fNIRS experimental design begins with a clearly defined research question, and a clear need for the neuroimaging equipment being used.

This design should stem from a priori knowledge of

- The region of the brain being imaged
- The subject population being imaged
 - The task being used in the study
- The comparison/contrast to answer the question


!!! Frequency of the experimental design = 1 / (stimulus duration + ISI)

Modeling the Hemodynamic Response Function **NIRx**

Block Design

NIRX

Advantages

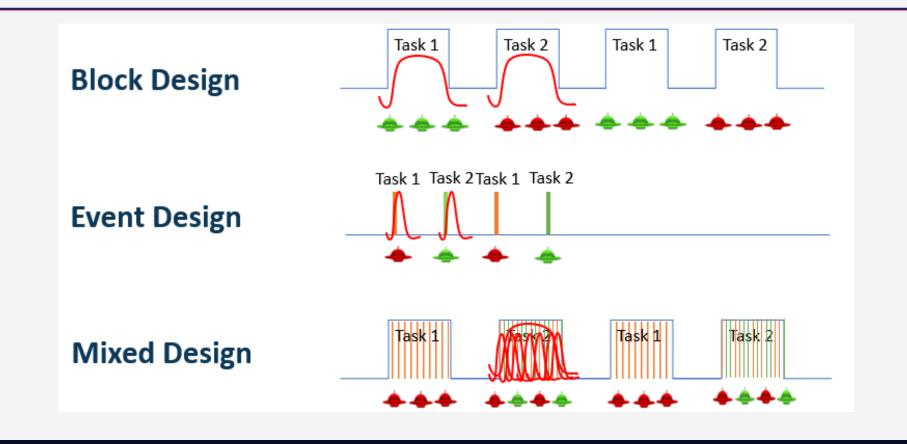
Response adds linearly for durations between 2-50 seconds Resting period duration should allow for time to return to baseline Common, easy to implement

Disadvantages:

Anticipation Participant engagement

Event-related Design

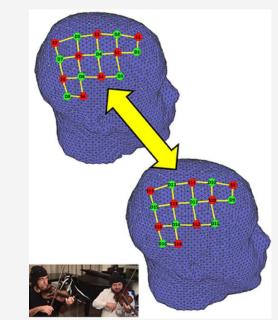
1 0.5 0 50 100 150 200 250 300 0 Stimulus ("Neural") HRF Predicted Data \otimes **Advantages** Avoids predictability and learning effects Time (s) Time (s) Time (s) 48 64 10 15 20 25 Ideal for certain task, ex. Go-no go **Null events**


NIR

Disadvantages

Smaller amplitude response requires more trials, longer experiment time Requires more precise of HRF because responses overlap

Mixed Design


NIRX

Experimental design

'Real World' & Resting State Design

- 'Real World' Design
 - Unconstrained imaging
 - Commonly used with Hyperscanning
- Resting State
 - Only ~5% of brain activation due to a task
 - Resting state data can be predictive of task performance & behavior
- Functional connectivity analysis
 - Synchronization of spatially remote neural activity
 - Illustrates how brain regions interact
 - Within a subject, between subjects

NIRX

- Be aware of task length
 - Min ~10-15 seconds per block to capture the hemodynamic response
 - Resting blocks in between to allow the decline
- Randomizing the blocks
- More repetition is better
 - Efficiency of the design can increase with number of blocks
- Collect imaging data for each task in one session
 - Unless you need to compare the data before and after therapy etc.
 - Ensure that your task conditions and environment stay the same
- How many rest periods do you need?
 - As much as your task condition
 - You can sometimes use this rest period to see if you task is working
 - Better efficiency when the rest timing is equal to average stimulation time of the task-related conditions.

Resources

Data and Experiment Examples:

 NIRx Support Site: Sample Experiments and Data Block, Event, Mixed Design:

• Petersen SE, Dubis JW. <u>The mixed block/event-related</u> <u>design</u>. Neuroimage. 2012. 10.1016/j.neuroimage.2011.09.084

Functional Connectivity:

- Videos
 - **<u>Video: Dr. Afrouz Anderson Hypothesis Basics</u> and Study Design
 - **<u>Video: Dr. Afrouz Anderson Experimental</u> Design

Santosa et al., 2017. <u>Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy</u>. J Biomed Opt. 2017 doi: 10.1117/1.JBO.22.5.055002.

Design Efficiency

 <u>https://imaging.mrc-</u> cbu.cam.ac.uk/imaging/DesignEfficiency

Guide:

<u>NIRx Experiment Design: Getting Started Guide</u>